Renovate our 40 products and stay live
K-Nearest Neighbors (KNN) Classification
Given Dataset
s_w | s_l | p_w | p_l | class |
---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | 1 |
4.9 | 3.0 | 1.4 | 0.2 | 1 |
4.7 | 3.2 | 1.3 | 0.2 | 2 |
4.6 | 3.1 | 1.5 | 0.2 | 2 |
5.0 | 3.6 | 1.4 | 0.2 | 3 |
5.4 | 3.9 | 1.7 | 0.4 | 3 |
New Data Point for Classification
s_w | s_l | p_w | p_l | class |
---|---|---|---|---|
5.0 | 3.0 | 1.0 | 0.3 | ? |
Euclidean Distance Calculation (for k = 3)
1. For the first row (class 1):
- Formula: √(x2 - x1)2 + (y2 - y1)2
- Calculation: √(5.0 - 5.1)2 + (3.0 - 3.5)2 ≈ 0.656
2. For the second row (class 1):
- Formula: √(x2 - x1)2 + (y2 - y1)2
- Calculation: √(5.0 - 4.9)2 + (3.0 - 3.0)2 ≈ 0.424
3. For the third row (class 2):
- Formula: √(x2 - x1)2 + (y2 - y1)2
- Calculation: √(5.0 - 4.7)2 + (3.0 - 3.2)2 ≈ 0.479
4. For the fourth row (class 2):
- Formula: √(x2 - x1)2 + (y2 - y1)2
- Calculation: √(5.0 - 4.6)2 + (3.0 - 3.1)2 ≈ 0.656
5. For the fifth row (class 3):
- Formula: √(x2 - x1)2 + (y2 - y1)2
- Calculation: √(5.0 - 5.0)2 + (3.0 - 3.6)2 ≈ 0.729
6. For the sixth row (class 3):
- Formula: √(x2 - x1)2 + (y2 - y1)2
- Calculation: √(5.0 - 5.4)2 + (3.0 - 3.9)2 ≈ 1.213
Identify k Nearest Neighbors
The three smallest distances:
- Row 2 (class 1): √(0.18) ≈ 0.424
- Row 3 (class 2): √(0.23) ≈ 0.479
- Row 1 (class 1): √(0.43) ≈ 0.656
Determine Majority Class
Majority class among the three smallest distances: Class 1 (2 occurrences).
Conclusion
If k = 3, the predicted class for the new data point (5.0, 3.0, 1.0, 0.3) using k-Nearest Neighbors is Class 1.
<!DOCTYPE html>
For the first row (class 1):
distance = (5.0 − 5.1)2 + (3.0 − 3.5)2 + (1.0 − 1.4)2 + (0.3 − 0.2)2
distance ≈ 0.01 + 0.25 + 0.16 + 0.01 ≈ 0.43 ≈ 0.656
Written on December 17, 2023